NAN 해결방법ㅠNAN 해결방법ㅠ

NAN 해결방법ㅠNAN 해결방법ㅠ

QA

NAN 해결방법ㅠNAN 해결방법ㅠ

답변 1

본문

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np

x_data = [[25,10,3],[29,6,4],[0,1,1],[28,2,0],[12,14,1],[5,13,3],[28,1,4],[20,0,3],[5,2,0],[3,0,1],[2,6,3],[20,2,2],[7,15,4],[27,14,2],[18,8,0],[1,12,3],[21,5,4],[19,12,2],[2,5,3],[17,0,4],[5,5,0],[15,3,3],[25,7,4],[26,3,3],[14,12,1],[0,11,0],[9,13,2],[6,6,3],[17,15,2],[19,13,0]] 
y_data = [[0,1,0],[0,0,1],[0,0,1],[0,0,1],[0,1,0],[0,1,0],[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,1,0],[1,0,0],[0,0,1],[0,0,1],[0,0,1],[1,0,0],[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,1,0],[0,0,1],[0,1,0],[0,0,1],[1,0,0],[0,1,0]] 

X=tf.placeholder(tf.float32,[None,3]) 
Y=tf.placeholder(tf.float32,[None,3])
nb_classes = 3 

W=tf.Variable(tf.random_normal([3, nb_classes]), name = 'weight')
b=tf.Variable(tf.random_normal([nb_classes]), name = 'bias')

hypothesis = tf.nn.softmax(tf.matmul(X,W) + b)

cost = tf.reduce_mean( - tf.reduce_sum(Y * tf.log(hypothesis) + (1-Y) * tf.log(1-hypothesis)))

optimizer =tf.train.GradientDescentOptimizer(learning_rate=0.001)
train=optimizer.minimize(cost)

#-----------------------------------------------------------------------#

xdata_new=  [[1,11,7],[1,3,4],[1,1,0],[1,1,0]] 

sess = tf.Session()
sess.run(tf.global_variables_initializer())

for step in range(2001):
    _, cost_val=sess.run([train,cost], feed_dict={X:x_data, Y:y_data})
    
    if step %100==0:
            print(step, cost_val)
    sess.run(hypothesis, feed_dict={X: x_data})
    
    a = sess.run(hypothesis, feed_dict = { X:xdata_new})
print(a, sess.run(tf.arg_max(a,1)))

 

위와같이 모델을 만들었는데 제가 데이터를 많이 넣었더니 nan이 뜨네요ㅠ learnig rate만 조절해 봤는데 해결이 안되서 부탁드립니다..cost 값이 0.xxxx값이 나오도록 할수 있을까요..?

이 질문에 댓글 쓰기 :

답변 1

0 nan
100 nan
200 nan
300 nan
400 nan
500 nan
600 nan
700 nan
800 nan
900 nan
1000 nan
1100 nan
1200 nan
1300 nan
1400 nan
1500 nan
1600 nan
1700 nan
1800 nan
1900 nan
2000 nan
[[nan nan nan]
 [nan nan nan]
 [nan nan nan]
 [nan nan nan]] [0 0 0 0]

 

결과는 이렇게 나오고있습니다!

답변을 작성하시기 전에 로그인 해주세요.
QA 내용 검색
질문등록
전체 211
© SIRSOFT
현재 페이지 제일 처음으로