2018 이란기하올림피아드 초급 3번문제 > 퀴즈게시판

퀴즈게시판

답을 맞히시면, 문제를 내신 회원님이 채택을 해드립니다.
채택은 '좋아요'와 같습니다.

2018 이란기하올림피아드 초급 3번문제 정보

2018 이란기하올림피아드 초급 3번문제

본문

2018 이란기하올림피아드 초급 3번문제

 

평행사변형 ABCD에 대하여, ∠D=60∘, AD=2, AB=√3+1이다. 점 M은 AD의 중점이고, 선분 MB 위의 점 K에 대해 선분 CK가 각 C의 각이등분선일 때, ∠CKB의 값을 구하여라.

 

 

  • 복사

댓글 1개

작성자에 의해 채택됐습니다.


일단 답은 75도.

색 순서대로 풀이가 연결됩니다.
빨강 - 한쪽 각도가 60도인 직각삼각형을 그립니다.
주황색 - 제일 긴 변이 root3+1이므로, 1:2:root3의 법칙에 따라
두 변의 길이가 파악됩니다.
녹색 - AM의 경우 1이므로 M-A-직각삼각형의직각부분 길이 합이 계산이되고,
직각삼각형의직각부분-B의 길이는 이미 확인되 있습니다.

그 둘의 길이가 (root3+3)/2 로 동일하므로, 직각이등변 삼각형이 됩니다.

AMB는 45도가 되고, 반대편도 45도이며, 직각삼각형의 30도를 빼면, 15도가 남고, ABC는 60도이므로,
KBC는 45도가 됩니다. KCB는 60도(BCD의 반이므로)이기 때문에 45+60은 105도, BKC는 75도.

풀릴듯 싶은 느낌이긴 했는데 정답인지 의심스러울정도로 수월하게 풀렸네요. 정답이 아니면 빨리 알려주세요.
  • 채택 0
© SIRSOFT
현재 페이지 제일 처음으로