넓이를 구하라
2개의 동심원 사이에 끼인 트랙의 넓이를 구하려고 하는데 그림과 같이 내부의 원에 접하는 바깥쪽의 원의 현 AB를 측정하였다. 그 길이는 20미터였다. 이것만 알면 나머지는 계산으로 구할 수 있다는 것을 알고 있기 때문이다. 트랙의 넓이는 얼마일까?

|
댓글을 작성하시려면 로그인이 필요합니다.
댓글 8개
AB의 반인 10미터랑 직각삼각형을 이루므로
a^2-b^2=100 입니다.
트랙 너비는 a-b이며 길이는 트랙의 중앙을 지나는 원주이므로 (a+b)/2의 원주는 즉 (a+b)×π 입니다.
이 둘을 곱하면 (a2-b2)×π가 되므로
정답은 100π
[http://sir.kr/data/editor/1907/5cb375469ebee6ff89f43ac94441e28a_1563239387_0293.png]
a=x/(root(3))
b=x/(2*root(3))
a^2 * π - b^2 * π = x^2/3 - x^2/(4*3) = x^2 * 4/12π - x^2 * 1/12π = x^2 * 3/12 π = x^2 * 1/4π
= (x/2)^2 π
그러므로 위와 같이 20미터가 나오면 반으로 나눠서 제곱하면 됩니다.
30미터가 나오면 15*15π 로..
안 원에 위접하는 정사각형에 의해서 안 원의 반지름은 10,
따라서,
100π
문제 푸는 시간보다 답쓰는게 더 어렵습니다. (재주가 없어서 글쓰는데 시간을 많이 소비)